45 research outputs found

    Effect of Parenchymal Stiffness on Canine Airway Size with Lung Inflation

    Get PDF
    Although airway patency is partially maintained by parenchymal tethering, this structural support is often ignored in many discussions of asthma. However, agonists that induce smooth muscle contraction also stiffen the parenchyma, so such parenchymal stiffening may serve as a defense mechanism to prevent airway narrowing or closure. To quantify this effect, specifically how changes in parenchymal stiffness alter airway size at different levels of lung inflation, in the present study, we devised a method to separate the effect of parenchymal stiffening from that of direct airway narrowing. Six anesthetized dogs were studied under four conditions: baseline, after whole lung aerosol histamine challenge, after local airway histamine challenge, and after complete relaxation of the airways. In each of these conditions, we used High resolution Computed Tomography to measure airway size and lung volume at five different airway pressures (0, 12, 25, 32, and 45 cm H2O). Parenchymal stiffening had a protective effect on airway narrowing, a fact that may be important in the airway response to deep inspiration in asthma. When the parenchyma was stiffened by whole lung aerosol histamine challenge, at every lung volume above FRC, the airways were larger than when they were directly challenged with histamine to the same initial constriction. These results show for the first time that a stiff parenchyma per se minimizes the airway narrowing that occurs with histamine challenge at any lung volume. Thus in clinical asthma, it is not simply increased airway smooth muscle contraction, but perhaps a lack of homogeneous parenchymal stiffening that contributes to the symptomatic airway hyperresponsiveness

    What can computed tomography and magnetic resonance imaging tell us about ventilation?

    Get PDF
    This review provides a summary of pulmonary functional imaging approaches for determining pulmonary ventilation, with a specific focus on multi-detector x-ray computed tomography and magnetic resonance imaging (MRI). We provide the important functional definitions of pulmonary ventilation typically used in medicine and physiology and discuss the fact that some of the imaging literature describes gas distribution abnormalities in pulmonary disease that may or may not be related to the physiological definition or clinical interpretation of ventilation. We also review the current state-of-the-field in terms of the key physiological questions yet unanswered related to ventilation and gas distribution in lung disease. Current and emerging imaging research methods are described, including their strengths and the challenges that remain to translate these methods to more wide-spread research and clinical use. We also examine how computed tomography and MRI might be used in the future to gain more insight into gas distribution and ventilation abnormalities in pulmonary disease

    Individual Canine Airway Response Variability to a Deep Inspiration

    Get PDF
    In healthy individuals, a DI can reverse (bronchodilation) or prevent (bronchoprotection) induced airway constriction. For individuals with asthma or COPD, these effects may be attenuated or absent. Previous work showed that the size and duration of a DI affected the subsequent response of the airways. Also, increased airway tone lead to increased airway size variability. The present study examined how a DI affected the temporal variability in individual airway baseline size and after methacholine challenge in dogs using High-Resolution Computed Tomography. Dogs were anesthetized and ventilated, and on 4 separate days, HRCT scans were acquired before and after a DI at baseline and during a continuous intravenous infusion of methacholine (Mch) at 3 dose rates (17, 67, and 200 ΞΌg/min). The Coefficient of Variation was used as an index of temporal variability in airway size

    Ratchet recruitment in the acute respiratory distress syndrome: lessons from the newborn cry

    Get PDF
    Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn’s cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales

    Preface

    No full text

    Intratidal Overdistention and Derecruitment in the Injured Lung: A Simulation Study

    No full text

    Frequency-Selective Computed Tomography: Applications During Periodic Thoracic Motion

    No full text
    corecore